LOJ 10224 GT 考试

题目链接

\(f[i][j]\)表示考虑准考证号\(i\)的后缀与 A 长度为\(j\)的前缀匹配的方案数。
\(f[i][j]=\sum\limits_{k=0}^{n}f[i-1][k]\times g[k][j]\)
\(g[k][j]\)表示填入有多少个数字使匹配长度从\(k\)变成\(j\)
第二个可以用 kmp 预处理。
dp 方程是矩乘的形式,可以用矩阵乘法优化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include <bits/stdc++.h>
using namespace std;

const int N = 30;
int n, m, MOD, f[N], mc[N][N];
char s[N];

struct Martix {
int x, y, f[N][N];
Martix (int X, int Y) {
x = X, y = Y;
memset(f, 0, sizeof f);
}
Martix operator * (const Martix& q) const {
Martix t(x, q.y);
for (int i = 0; i < t.x; i++)
for (int j = 0; j < t.y; j++)
for (int k = 0; k < y; k++) t.f[i][j] = (1ll * t.f[i][j] + f[i][k] * 1ll * q.f[k][j]) % MOD;
return t;
}
};

void kmp() {
f[0] = -1;
for (int i = 1; i <= m; ++i) {
int j = f[i - 1];
while (s[j + 1] != s[i] && j != -1) j = f[j];
f[i] = j + 1;
}
f[0] = 0;
for (int i = 0; i < m; i++) {
for (int j = '0'; j <= '9'; j++) {
int tmp = i;
while (s[tmp + 1] != j && tmp > 0) tmp = f[tmp];
if (s[tmp + 1] == j)
tmp++;
mc[i][tmp]++;
}
}
}

Martix fpow(Martix c, int b) {
Martix res(m, m);
for (int i = 0; i <= m; i++) res.f[i][i] = 1;
for (; b; b >>= 1, c = c * c) if (b & 1) res = c * res;
return res;
}

int main() {
scanf("%d %d %d", &n, &m, &MOD);
scanf("%s", s + 1);
kmp();
Martix g(m, m), a(m, 1);
a.f[0][0] = 1;
for (int i = 0; i <= m; i++)
for (int j = 0; j <= m; j++) g.f[i][j] = mc[i][j];
g = fpow(g, n);
a = a * g;
int ans = 0;
for (int i = 0; i < m; i++) ans = (ans + a.f[0][i]) % MOD;
printf("%d\n", ans);
return 0;
}


LOJ 10224 GT 考试
https://widsnoy.top/posts/9fcb/
作者
widsnoy
发布于
2020年9月15日
许可协议